miércoles, 17 de septiembre de 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!

lunes, 18 de agosto de 2014

DidácTICa de la suma y resta

No voy a hacer comentarios a esta ¿presentación interactiva? ¿libro interactivo?. Creo que es algo más que eso. De cualquier manera pueden juzgarlo los/as lectores/as. Agradeceré y publicaré cualquier comentario al respecto.

martes, 3 de junio de 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)


jueves, 1 de mayo de 2014

Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI

Los centros educativos son algo dinámico, vivo, cambiante. En mi centro, en concreto, viene cambiando de un curso para otro aproximadamente un tercio del profesorado. De hecho, hemos visto necesaria en este curso escolar la revisión de las líneas metodológicas en matemáticas y, más en concreto, la necesidad de unificar criterios y materiales didácticos en relación con la resolución de problemas (que ya se había manifestado en la memoria final del curso pasado).

Movido por esta necesidad y como consecuencia de las acciones planificadas para lograr mayor coordinación, he organizado de manera interactiva, y siguiendo mis propios criterios, un buen número de aplicaciones que se ofrecen en este blog ( mejorándolas y añadiendo otras nuevas) y que inciden sobre la RESOLUCIÓN DE PROBLEMAS ARITMÉTICOS ESCOLARES. El resultado es un taller bastante amplio y rico que se instalará en todos los ordenadores del centro para poder ser utilizado offline.

Este taller es coherente con las líneas metodológicas para el ÁREA DE MATEMÁTICAS consensuadas en nuestro PLAN DE CENTRO, a la vez que las ejemplifica, materializa y concreta en forma de actividades interactivas para la Etapa Primaria (en lo que a RP aritméticos se refiere). Las 32 aplicaciones TIC que lo configuran abordan de manera NO RUTINARIA e INNOVADORA la resolución de problemas aritméticos  proporcionando una experiencia amplia, rica, atractiva y curricularmente relevante de lo que es 'resolver problemas' haciendo uso de los ordenadores del centro y de las PDIs.




(Ver a pantalla completa)
(Taller presentado por primera vez en público en el CEIP. Serafina Andrades, de Chiclana de la Frontera (Cádiz) // Mayo-2014)

No son simples baterías de problemas al uso propuestas a los/as alumnos/as para constatar si saben, o no, resolver determinados problemas. Se han diseñado con un sólida fundamentación didáctica pensando tanto en los docentes como en los/as alumnos/as, para incidir en los procesos claves de la enseñanza-aprendizaje de la RP, proporcionando a los/as alumnos/as el andamiaje necesario para la realización de los retos propuestos.

La riqueza y diversidad de METAMODELOS y MODELOS  procedimentales inciden de manera especial en el análisis/síntesis de la información, el establecimiento de relaciones entre las partes y el todo, la explicitación de la ESTRUCTURA del problema tanto a NIVEL LINGÜÍSTICO (prealgebraico) como a NIVEL ALGEBRAICO (operaciones combinadas), el reconocimiento de situciones problemáticas CONVERGENTES Y DIVERGENTES, el desarrollo del SIGNIFICADO OPERACIONAL, ... 

Este Taller pone de manifiesto que más que la búsqueda de un procedimiento o método que sirva para la resolución de cualquier problema aritmético se persigue y apuesta por la riqueza de procedimientos en la RP. En este sentido, se ha tenido en cuenta la teoría expuesta por José A. Fernández Bravo en <TÉCNICAS CREATIVAS PARA LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS> sobre metamodelos procedimentales en problemas verbalizados con enunciado y pregunta, sobre todo modelos de ESTRUCTURACIÓN Y GENERATIVOS. No obstante, también se tratan problemas no verbales (sin enunciado) y mixtos (con enunciado incompleto o desectructurado)...

Por otra parte, se enriquece la teoría de Fernández Bravo con la incorporación de novedosos metamodelos TIC y la interactividad que permiten ('simulación', 'modelización', 'análisis y síntesis mediante cartulinas multiproblema', 'resolución asistida', etc...). 

Se ha pretendido en todo momento que los problemas o retos propuestos resulten atractivos para los/as alumnos/as. Por lo general se presentan contextualizados con escenas gráficas en las que intervienen niños y niñas en situaciones más o menos cotidianas.

No existe en la red ( o en la nube si se prefiere) algo similar.


Aunque las aplicaciones son muy artesanales, están bastante experimentadas y  muy bien cuidadas en sus aspectos esenciales (interactividad, estadísticas, información al profesorado del interés didáctico,...), la propuesta - como todo lo que ofrezco en mi blog- es susceptible de mejora, ampliación y cambios. Todas las aplicaciones incluidas en este taller (algunas de ellas son, a su vez, macroaplicaciones) están perfectamente adaptadas para su uso con PDI.





miércoles, 9 de abril de 2014

La competencia matemática en educación primaria: algunas estrategias para ayudar a los maestros a integrar la adquisición de estrategias...

Resulta grato toparse con trabajos como éste. Se trata de una TRABAJO FIN DE GRADO realizado en 2012-2013 para la titulación en Grado de Educación Primaria  cuyo autor es Diego Matés Potes y cuya directora es Luz Roncal Gómez. Ha sido publicado por la Universidad de la Rioja bajo licencia Creative Commons (BY-NC-ND).

Y resulta grato porque permite constatar una formación inicial para futuros maestros/as, en el área de matemáticas, bien fundamentada y bien dirigida (La adquisición de competencias matemáticas a través de la Resolución de Problemas). 

(Dado que la versión de este documento en Calaméo no tiene activos los hipervínculos, os ofrezco este documento en versión .pdf con los vínculos activos)

Me resulta, además, especialmente satisfactorio constatar que mis propuestas sobre la Resolución de Problemas van calando en diferentes Facultades de Educación...y que otros docentes reconozcan que mis trabajos son relevantes y pioneros dentro de la Didáctica de las Matemáticas en Primaria:



¡Gracias, Mariángeles! (De vez en cuando uno necesita alimentar su ego para seguir con esta ardua y desinteresada tarea de ofrecer lo mejor de su conocimiento profesional docente...)


jueves, 3 de abril de 2014

Niño resolviendo problemas propuestos en "PESA_PENSANDO_I" semidirigido por su mamá.

He encontrado en Youtube estos vídeos subidos por Luisa de Lama que ilustran el aprovechamiento fuera de la escuela de la aplicación "PESA PENSANDO I" ( incluida en "ProblemáTICas Primaria"). Una mamá supervisa y guía a su hijo mientras realiza, uno por uno, los 20 problemas propuestos en el apartado "balanzas fijas" de la aplicación aludida. 

Me ha alegrado mucho encontrarlo puesto que yo suelo limitarme a desarrollar contenidos educativos multimedia interactivos - lo que ocupa todo mi tiempo disponible-, que nacen desde la escuela y para la escuela, pero no suelo ilustrar su uso, mediante vídeos, con alumnos y alumnas... En este caso Luisa de Lama lo ha hecho por mí. Se pone de manifiesto el valor añadido de los contenidos educativos multimedia bien diseñados y atractivos, tanto para el trabajo individual como colectivo, bien sea dirigido, semidirigido o autónomo; tanto en el aula como en otras situaciones de enseñanza-aprendizaje...

Se trata de una aplicación fuertemente visual en la que el equilibrio de la/s balanza/s es fácilmente interpretado como una igualdad y que favorece enormemente la captación y expresión de las relaciones numéricas... Las balanzas implementan, con dificultad gradual, ecuaciones de primer grado y sistemas de dos ecuaciones con dos incógnitas que están al alcance de niños y niñas de 2º y 3º ciclo de Educación Primaria. Con los alumnos y alumnas de 3º ciclo pueden ser utilizadas de manera prealgebraica como se ilustra en "Álgebra y resolución de ecuaciones en Primaria_1".

Como se puede comprobar, cada problema propuesto es un soporte ideal para que el niño verbalice tanto las relaciones numéricas como el razonamiento lógico que lleva a la solución. Viene bien como continuación de los últimos post de este blog dedicados a la resolución de PAEV ya que, al fin y al cabo, es otro modelo_TIC de resolución de PAEV.

Aunque yo concebí la aplicación como soporte, también, de estrategias para el cálculo mental, vemos que no pierde virtualidad si se recurre a cálculos con lápiz y papel. (Ver también "Pesa_pensando II" y "Balanzas fijas equilibradas")








miércoles, 26 de marzo de 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_III. Del enunciado a la expresión algebraica solución del problema.

En un post que escribí hace ya más de dos años (En busca del significado. Operaciones combinadas en Primaria. ¿Por qué? ¿Para qué?) ilustraba con numerosos ejemplos que la práctica totalidad de las aplicaciones_TIC que tratan las operaciones combinadas lo hacen de una manera descontextualizada ( al margen de la resolución de problemas) y con un enfoque convergente, meramente instructivo (la expresión algebraica es algo dado al alumno, ajena a él; se busca la interpretación correcta única, la correcta decodificación basada en el uso de convenios relacionados con la jerarquía de las operaciones…).

 

Las operaciones combinadas se presentan, efectivamente, como algo dado a los alumnos para que éstos las interpreten pero no como producción o construcción de los propios alumnos haciendo uso del lenguaje matemático en el contexto de resolución de problemas. Si bien la correcta interpretación (decodificación) es necesaria, no es suficiente para desarrollar niveles superiores de competencia matemática relacionada con el dominio progresivo y contextualizado del lenguaje simbólico..



Si además tenemos en cuenta que las soluciones numéricas, en nuestra sociedad tecnológicamente avanzada, son casi exclusivamente dadas como expresiones alfanuméricas (operaciones combinadas) que los procesadores matemáticos de calculadoras, computadoras y otros muchos dispositivos electrónicos resuelven numéricamente, se hace más patente la necesidad de un nuevo enfoque en la didáctica de las operaciones combinadas (que no parecen sostenerse como un tópico matemático aislado e independiente de otros…)

 

Por otra parte, he comentado en diferentes artículos de mi blog que desarrollar aplicaciones TIC sobre resolución de problemas consistentes en baterías de problemas con comprobación de la solución (entendida como un número) no supone un gran avance con respecto a una batería de problemas propuestos en material impreso (o en algún formato digital equivalente). Las aplicaciones TIC sobre resolución de problemas deben ir más allá, buscando incidir interactivamente en el meollo del proceso de resolución…



El modelo de resolución de PAEV que propone esta nueva aplicación pone el énfasis en la producción, por parte de los alumnos y alumnas, de expresiones algebraicas (operaciones indicadas) que pueden considerarse ya soluciones del problema. No obstante, la aplicación, para cada problema diferente, evalúa tanto la expresión algebraica producida como el número dado como solución... Evidentemente la aplicación implementa un nivel deseable para alumnos del tercer ciclo de la Etapa Primaria. Además, aunque no se expliciten las relaciones entre magnitudes (análisis y síntesis) éstas han de realizarse ineludiblemente para poder resolver correctamente el problema propuesto. Es por ello que se recomienda que antes se hayan trabajado otras aplicaciones que pongan de manifiesto el análisis síntesis en la resolución de PAEV, como las que se tratan en post anteriores a éste en este mismo blog.

 

Basta experimentar con la aplicación para darse cuenta de que el paso o traducción de las relaciones implícitas en el enunciado del problema a su expresión algebraica no es precisamente un proceso convergente. Muy al contrario, se trata por lo general de un proceso divergente y, por tanto, creativo Para ilustrar esta afirmación podemos analizar un ejemplo:



Las siguientes expresiones algebraicas, entre otras, serían respuestas válidas atendiendo a las restricciones que impone la aplicación (la expresión algebraica sólo puede utilizar datos presentes en el enunciado, es decir, no puede contener números que sean resultado de un cálculo previo con datos; un determinado dato, por lo general, aparece una sola vez en la expresión,… ):
1.-  ((49 x 10) : 280) : 7
2.-  ((10 x 49) : 280) : 7
3.-  ((49 x 10) : 7) : 280
4.-  ((10 x 49) : 7) : 280
5.-  (49 x 10) : 280 : 7
6.-  49 x 10 : 280 : 7
7.-  49 x 10 : 7: 280
8.-  (49 x 10 : 280) : 7
9.-  (49 x 10 : 7): 280
10.- 49 x (( 10 : 7): 280)
11.- 49 x (( 10 : 280): 7)
Lo primero que salta a la vista es que podemos hacer uso exclusivamente de paréntesis estrictamente necesarios o bien utilizar también paréntesis “personales” que sirven para reforzar la consideración de una determinada cantidad de una magnitud creada durante la fase de análisis/síntesis que no aparece de forma explícita en el enunciado del problema o bien para dar cuenta de la estrategia seguida para llegar a la solución…

Mientras que en 1, por ejemplo, se ha calculado primero el arroz total que corresponde a cada persona durante una semana, en 3 se ha calculado primero el arroz total que corresponde a todo el campamento en un día… Personalmente, encuentro que las expresiones 1 y 3 son más significativas que sus correspondientes 6 y 7, respectivamente. Y esto es, precisamente, porque hacen uso de paréntesis que aún no siendo estrictamente necesarios sí que aportan significado.

Es precisamente la economía de paréntesis la que puede dar problemas y la que da origen a convenios en la realización de determinadas secuencias de cálculo, como se ilustra en la imagen. La aplicación da por válida la expresión 49 x 10 : 280 : 7. Sin embargo puede que el alumno no realice correctamente la secuencia de cálculos. Es por ello que la aplicación también comprueba el valor numérico de la expresión algebraica.

Desde un punto de vista técnico, contemplar la divergencia en las respuestas correctas dificulta considerablemente el código y diseño de la aplicación… Pero merece la pena una aplicación así ya que favorece especialmente que el problema sea captado de manera global haciendo más patente la estructura del problema.

Los problemas que se proponen en esta aplicación manejan datos numéricos realistas y coherentes con las situaciones problemáticas presentadas. Se pretende, además, que los alumnos realicen los cálculos en línea, no en columnas, sobre la propia expresión algebraica. Para ello, se ha habilitado una zona de escritura “a mano”, que puede utilizarse tanto para ensayar la expresión algebraica solución como para realizar los cálculos.

Cuando se utiliza en clase, con la PDI, es necesario que los niños y niñas realicen el análisis/síntesis del problema y justifiquen oralmente el proceso de resolución seguido. 

Una aplicación que complementa perfectamente a ésta es "ASOCIA":







martes, 4 de marzo de 2014

Andalucía Educativa. Desde las TIC hasta las TAC.


La revista digital Andalucía Educativa, en su sección "En portada", ha publicado un monográfico especial sobre las TIC bajo el título Desde las TIC hacia las TAC.




Dentro del apartado LA COMUNIDAD EDUCATIVA CUENTA SU EXPERIENCIA, podemos leer artículos de opinión correspondientes a centros, profesorado, alumnado y familias; entre ellos mi colaboración titulada "Más de dos décadas caminando con TIC. Juan García Moreno".







Otros artículos de opinión publicados en este mismo apartado:


  • CENTROS

  • PROFESORADO

  • ALUMNADO

En los siguientes muros podemos ver recogidas las opiniones del alumnado sobre como la incorporación de las TIC ha influido en su vida como estudiante.

  • FAMILIAS

domingo, 9 de febrero de 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_II

Voy a comenzar este post  presentando un fragmento literal de un valioso documento (una tesis doctoral) titulado “Sobre habilidades en la resolución de problemas aritméticos verbales, mediante el uso de dos sistemas de representación yuxtapuestos”, de JOSEFA HERNÁNDEZ DOMÍNGUEZ (Curso 1996/97. CIENCIAS Y TECNOLOGÍAS (Páginas 18 y 19). Servicio de publicaciones de la universidad de la Laguna)

El problema, en el que centramos nuestra investigación, tiene que ver con el conocimiento de las dificultades, que experimentan los alumnos en la resolución de los problemas aritméticos verbales, y la influencia que el uso de sistemas de representación gráfica tiene en la mejor comprensión de los mismos. La falta de habilidad de los estudiantes en la resolución puede estar relacionada con múltiples factores, como la no comprensión del enunciado del problema, debido a no haber adquirido un grado suficiente de capacidad de lectura, un dominio insuficiente del significado de las operaciones, una falta de capacidad para razonar en un problema concreto, la incorrecta ejecución de las operaciones o no saber el orden en que éstas (si son varias) ha de seguirse.


Al mismo tiempo, los profesores expresan sus propias dificultades al tratar de desarrollar el aprendizaje sobre la resolución de problemas.

Unos se inclinan por enseñarles a buscar palabras clave, otros enfatizan la lectura comprensiva del texto, otros llegan incluso a utilizar la plástica o la dramatización como elementos que faciliten la comprensión, pero el sentimiento general que expresan sigue siendo el de no tener claro el camino a seguir….


Desde principios de siglo, psicólogos y educadores matemáticos han tratado de investigar las causas de estas dificultades; unos las han atribuido a déficits lingüísticos, otros a dificultades aritméticas específicas. La forma de la enseñanza es otro factor clave. Nuestras escuelas inciden fuertemente en los algoritmos y menos en el desarrollo de estrategias y en la maduración de procesos cognitivos superiores, tales como el nivel de razonamiento y la comprensión conceptual. La típica pregunta que hacen muchos alumnos en el aula cuando se enfrentan a resolver un problema aritmético verbal, “¿tengo que sumar o restar?”, refleja el objetivo de los problemas aritméticos escolares: la elección de una operación y su ejecución como fin fundamental de los mismos. Y, finalmente, aunque menos investigadas, las variables afectivas, que ahora han emergido con mucha fuerza, tienen también algo que aportar sobre las dificultades en la resolución de problemas…
Creo que una gran mayoría de maestros /as estará de acuerdo con este diagnóstico sobre la situación en torno a la resolución de PAEV.

Puesto que en los PAEV el enunciado verbal en que se presenta el problema no separa a éste en sus partes constituyentes, el trabajo con el problema comienza con la lectura comprensiva de su enunciado (texto-problema) que debe llevar a una primera descomposición del texto y al aislamiento de datos e incógnita salvando las dificultades derivadas de los aspectos sintácticos del enunciado:

El tamaño del problema, que se puede medir por el número de caracteres, palabras o frases. 
La complejidad gramatical, entendida como el número de sustantivos, adjetivos, pronombres, etc, o al tipo de oraciones y proposiciones que constituyen el enunciado del problema. 
La presentación de los datos mediante números, símbolos o palabras. 
La situación de la pregunta en texto del problema, que podrá dar lugar a situaciones diferentes: situaciones en que están bien explicitados los tres elementos del enunciado:
          1. Canónicas: son del tipo [ a + b = ? ] 
          2. No canónicas: del tipo [ a + ? = c ] o [ ? + b = c ] 
O bien, situaciones que no están correctamente explicitadas, como por ejemplo que el texto completo sea una interrogación en la que se entremezclen tanto la información como la pregunta del problema. (Diferentes estudios vienen a demostrar que problemas así formulados son más difíciles de resolver)
La explicitación de la relación semántica entre los datos y la incógnita, la presencia de datos o no en la pregunta del problema, la existencia de datos irrelevantes,...
El orden de presentación de los datos en el texto del problema, que se puede corresponder, o no,  con el orden en que éstos han de ser considerados a la hora de efectuar la operación. 

Pero, ¿cómo se puede controlar mediante una aplicación TIC - que favorezca el trabajo autónomo o semidirigido- que el alumno ha llevado a cabo satisfactoriamente esta lectura analítica? En esta aplicación, para cada problema, se proponen cinco afirmaciones relativas al enunciado del mismo en las que el alumno/a debe decidir si son verdaderas o falsas…Esta fase previa a la realización del problema obliga al alumnado al análisis del mismo.  La elección realizada por el alumno nos dará una medida de la comprensión del problema. Es evidente que hoy por hoy no podemos desarrollar una aplicación que valore cualitativamente una respuesta libre y abierta a preguntas determinadas. Lo que ocurre, a mi juicio, es que para PAEV de nivel 1, a no ser que adrede dificultemos el texto, puede resultar una tarea un tanto repetitiva. Además una pregunta bien formulada puede tener casi tanta complejidad sintáctica como el propio enunciado del problema…
De cualquier forma, resulta imprescindible provocar que un alumno traduzca el problema con sus propias palabras obligándole a mencionar, al hacerlo, los datos y la incógnita del problema.
La aplicación permite tachar datos innecesarios del enunciado del problema, subrayar datos e incógnita con diferentes colores, rodear palabras clave…

En “La instrucción en PAEV: Marcos, ideas y sugerencias ” Luis Puig y Fernando Cerdán nos advierten, ilustrándolo con ejemplos concretos, de ciertos peligros en relación con el uso de palabras-clave (más que, menos que, tantos como, más joven, más grande, caro, barato) y exponen diferentes criterios y puntos de vista interesantes en relación con la traducción entre diferentes representaciones del problema...

De suma importancia es considerar la traducción entre diferentes representaciones. El enunciado de cada problema se acompaña en esta aplicación de una imagen ilustrativa que lo contextualiza presentando objetos individuales que se mencionan en el problema, pero sin llegar a ser objetos analíticos en el sentido de que no dan cuenta de las relaciones numéricas entre los datos… Por otra parte, sí se posibilita y propone la utilización de un diagrama o esquema abstracto interactivo (representación evidentemente más provechosa que la mera ilustración) que permite reflejar fielmente las relaciones entre los datos y la incógnita y supone una nueva posibilidad de traducción entre diferentes representaciones del problema. Se trata de esquema todo-partes que se adecua a las diferentes tipologías de problemas de una sola operación de estructura aditiva (combinación, cambio y comparación) con la condición de que se asigne el significado correcto a cada parte en el contexto del problema, que se establezca la correcta dependencia semántica entre las proposiciones del texto.





(Ver a pantalla completa)
(En breve pienso publicar en este blog otra aplicación como esta para problemas de estructura multiplicativa de una sola operación))

Una vez superada esta fase del problema,  el análisis continúa  con la correcta colocación de las etiquetas de texto y la correcta selección de la operación a realizar. Todo ello previo a la realización de cálculos.

Cuando el análisis del contenido se realiza con problemas de varias operaciones hay que ir más allá de separar datos e  incógnita y de repetir por trozos el contenido del problema. Será necesario descomponer en partes, investigar cada parte, comparar unas partes con otras y determinar sus relaciones mutuas.

La aplicación que sigue es una variante de las presentadas en Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_I, para problemas de dos o más operaciones,  que refuerza de manera especial la distinción entre la expresión de la estrategia fundamental de resolución del problema y el desarrollo de ésta. A la par, apunta de manera más directa a la relación isomórfica entre estructura prealgebraica y expresión algebraica_solución del problema. (No obstante estoy trabajando actualmente en otra aplicación, en esta línea, que tenga mayor generalidad y se adecue a mayor número de PAEV de dos o más operaciones).