domingo, 25 de septiembre de 2016

Matemáticas_LOMCE. De las estrategias propias a los algoritmos estándar.

De las estrategias propias al algoritmo estándar...


Mucho se ha hablado y se seguirá hablando de los algoritmos estándar de las operaciones básicas en la enseñanza-aprendizaje de las matemáticas en la Etapa Primaria. Con la LOMCE, los correspondientes decretos por los que se establece el currículo de la Educación Primaria en cada una de las comunidades autónomas del estado español parecen reflejar un reforzamiento de los algoritmos estándar o tradicionales de las operaciones básicas, a pesar de que se contemplen, también, otros tipos de cálculo.

Aunque no he revisado todos y cada uno de los currículos  de matemáticas comunitarios (sería interesante que alguien con más tiempo hiciera un estudio detallado al respecto) sí puedo afirmar que la mayoría  de ellos contempla una situación muy parecida a la del currículo de matemáticas_Primaria en Andalucía:
Andalucía. Matemáticas. Primer ciclo
Contenidos:
2.16. Cálculo de sumas utilizando el algoritmo.
2.17. Cálculo de restas utilizando el algoritmo.
Indicadores:
MAT.1.5.1. Realiza operaciones de suma y resta con números naturales. Utiliza y automatiza sus algoritmos, aplicándolos en situaciones de su vida cotidiana y en la
resolución de problemas. (CMCT).
Andalucía. Matemáticas. Segundo ciclo
Contenidos
2.18. Utilización de los algoritmos estándar de sumas, restas, multiplicación por dos cifras y división por una cifra,aplicándolos en su práctica diaria.
Indicadores:
MAT.2.5.1. Realiza operaciones utilizando los algoritmos estándar de suma, resta, multiplicación y división con distintos tipos de números, en comprobación de resultados en contextos de resolución de problemas y en situaciones cotidianas. (CMCT, CAA).
Andalucía. Matemáticas. Tercer ciclo
Contenidos
2.22. Utilización de operaciones de suma, resta, multiplicación y división con distintos tipos de números, en situaciones cotidianas y en contextos de resolución de problemas. Automatización de los algoritmos.
Contenidos y criterios ( o indicadores) muy parecidos aparecen al menos en los currículos de Matemáticas de la Generalitat de Catalunya, Xunta de Galicia, Aragón, Baleares, Extremadura,  Navarra,...). No los he visto, en cambio, para la Comunidad de Madrid. Comunitat Valenciana y Canarias.

La mayoría (no todos) de estos currículos autónomos refuerzan la idea ( o creencia) de que los algoritmos estándar de las operaciones son una meta a la que hay que llegar por ser socialmente más eficientes que otros algoritmos de papel y lápiz.

¿Por qué no han tomado las demás comunidades autónomas la posición más abierta, más sencilla de expresar y  más consecuente con el estado actualo de la didáctica del cálculo que ha tomado, por ejemplo, la Comunitat Valenciana?
COMUNITAT VALENCIANA
CURSO 1º.
BL2.2. Sumar y restar números naturales de dos cifras con cualquier estrategia de cálculo (monedas, dedos, objetos, calculadora para investigar pequeñas situaciones numéricas,etc.), explicando el proceso seguido con sus propias palabras, dibujos y algoritmos escritos. Identificar las operaciones en situaciones que requieran unir o añadir, quitar o separar.

CURSO 2º.
BL2.2. Sumar y restar números naturales de tres cifras y multiplicar por 1, 2, 3, 4 y 5 como suma de sumandos iguales con cualquier estrategia de cálculo (monedas, dedos, objetos, calculadora para investigar pequeñas situaciones numéricas 2+2+2+2=2x4, etc.), explicando el proceso seguido con sus propias palabras y con algoritmos escritos. Identificar las operaciones en situaciones cotidianas que requieran unir o añadir, quitar o separar y repetir.

CURSO 3º
BL2.2 Sumar y restar números naturales de cuatro cifras, multiplicar por una cifra y dividir por una cifra en el divisor como reparto en partes iguales con cualquier estrategia de cálculo (monedas, billetes y objetos, memorización de las tablas, descomposición de números, calculadora para investigar pequeñas situaciones numéricas, etc.), explicando oralmente y/o por escrito (algoritmos escritos) el proceso seguido, haciéndose valer si fuera necesario de una calculadora. Identificar las operaciones en situaciones habituales por medio de juegos o simulaciones como un mercadillo, la preparación de una fiesta-cumpleaños, etc.

CURSO 4º
BL2.2. Operar con los números naturales con estrategias de cálculo (mental, estimación, calculadora, propiedades de los números) y procedimientos (algoritmos, calculadora) más adecuados según la naturaleza del cálculo para evaluar resultados, y extraer conclusiones en situaciones de compra-venta (rebajas, impuestos, presupuestos, reformas, etc.), de logística (distribución de recursos, planificación de viajes, etc.) y otras.

CURSO 5º
BL2.2. Operar con los números naturales y decimales con estrategias de cálculo (estimación, calculadora, propiedades de los números) y procedimientos (algoritmos y calculadora) más adecuados según la naturaleza del cálculo para evaluar resultados, y extraer conclusiones en situaciones de compra-venta (rebajas, impuestos, presupuestos, reformas, etc.), de logística (distribución de recursos, planificación de viajes, etc.) y otras.

CURSO 6º
BL2.2. Operar con los números naturales, decimales y fraccionarios con estrategias de cálculo (estimación, calculadora, propiedades de los números) y procedimientos (algoritmos y cualquier aplicación tecnológica que lo permita) más adecuados según la naturaleza del cálculo para evaluar resultados, extraer conclusiones y tomar decisiones en situaciones de compra-venta (p.e. rebajas, impuestos, presupuestos-reformas, etc.), de logística (p.e. distribución de recursos, planificación de viajes, etc.) y otras.

No voy aquí a abrir más este debate ni a posicionarme al respecto. Hay mucha literatura sobre ello que el/la lector/a, sin duda, sabrá encontrar si está interesado en ello. 

Desde este blog me voy a limitar a ofrecer, entre otros muchos formatos interactivos para el desarrollo de un cálculo pensado, flexible y basado en la descomposición numérica, aplicaciones interactivas que abordan los algoritmos estándar de las operaciones básicas. Comenzaré con los de la suma y la resta:



Pero como no todo son algoritmos estándar y son múltiples las estrategias de cálculo ligadas a las propiedades de las operaciones básicas, aprovecho este espacio para ofrecer, ligeramente renovadas, estas aplicaciones sobre la resta que ya figuraban en "Así calculamos en mi cole":



domingo, 4 de septiembre de 2016

Suma por COMPENSACIÓN y resta por DESPLAZAMIENTO



(Ver a pantalla completa)

Aunque ya he tratado con anterioridad estas propiedades fundamentales de la suma y la resta ("al pasar pastelillos de un plato a otro el número total de pastelillos no varía" - COMPENSACIÓN-; si en una resta el minuendo y el sustraendo se incrementan en una misma cantidad, positiva o negativa, la diferencia no varía -DESPLAZAMIENTO-) en Didáctica de la Suma y Resta, en Bloques base 10, (y en otros), presento aquí esta nueva aplicación para que se tenga presente lo que se entiende por "compensación" y "desplazamiento", puesto que son estos potentes procedimientos de cálculo, además del cálculo mental,  los que se proponen en esta completísima y modificada aplicación para abordar la resolución de PAEV de nivel 1 de estructura aditiva:

PAEV. Nivel 1. Estructura aditiva


domingo, 15 de mayo de 2016

Paisajes. Estadística elemental para 1º de Primaria.

Paisajes. Estadística para 1º de Primaria.

Dos atractivas aplicaciones que destacan por su cuidada estética y su marcado carácter lúdico. En cada una de ellas una población de animales de una misma especie (con movimiento, diferentes colores y tamaños) se distribuye en un paisaje panorámico que puede ser recorrido horizontalmente en ambos sentidos. El reto consiste en registrar la cantidad de animales de cada color, contarlos, compararlos y representarlos gráficamente. Con cada nuevo reto el número de animales del paisaje se configura de manera aleatoria dentro de un rango de números preestablecido adecuado al nivel. En el paisaje con elefantes éstos se registran de uno en uno. En la aplicación con peces se pueden registrar peces de uno en uno y de cinco en cinco. El movimiento conjunto de cada grupo de 5 peces permite  distinguirlo de los peces con movimiento individual y cuantificarlo de forma inmediata (subitización) por simple inspección visual, sin necesidad de contar.

Otras aplicaciones que tratan la estadística a nivel elemental: