domingo, 22 de enero de 2017

Cálculo estratégico de áreas.


Cálculo estratégico de áreas.


En algunas comunidades autónomas del estado español (Comunitat Valenciana, por ejemplo) aparece como contenido de 2º Ciclo (en 4º concretamente) la determinación y cálculo de áreas de cuadrados y rectángulos utilizando unidades no convencionales.

No es el caso de Andalucía,  a pesar de que sí que aparecen contenidos relativos a perímetros de figuras, ángulos,... en el 2º ciclo de Primaria. En Andalucía, contenidos y procedimientos relativos a la cantidad de superficie que ocupa una figura (un atributo visible y cuantificable de la misma) no aparece de manera explícita hasta el 3º ciclo de Primaria…

No obstante, en primer ciclo (Andalucía)  ya aparecen contenidos tales como:
  • Formación de figuras planas y cuerpos geométricos a partir de otras por composición y descomposición.
  • Búsqueda de elementos de regularidad en figuras y cuerpos a partir de la manipulación de objetos.

En segundo ciclo (Andalucía) se contemplan investigaciones sencillas, que pueden estar relacionadas con la geometría y la medida, se explicitan criterios para el perímetro tales como:

  • MAT.2.12.1. Comprende el método de cálculo del perímetro de cuadrados, rectángulos,triángulos, trapecios y rombos. (CMCT).
  • MAT.2.12.2. Calcula el perímetro de cuadrados, rectángulos, triángulos, trapecios y rombos, en situaciones de la vida cotidiana. (CMCT)

También se “agrupan” en un mismo nivel de dificultad longitud, masa y capacidad, por la regularidad (de 10 en 10) que presentan sus unidades en el SMD y quizá, también, por el peso de la tradición escolar que pone el énfasis en reducir los atributos geométricos a su cuantificación y expresión en diferentes unidades y trabajar las equivalencias de unidades más que las propias estrategias de determinación y cálculo.

En 3º ciclo (Andalucía) ya aparecen contenidos tales como:
  • 3.1. Unidades del Sistema Métrico Decimal de longitud, capacidad, masa, superficie y volumen.
  • 3.7. Desarrollo de estrategias para medir figuras de manera exacta y aproximada.
  • 3.11. Comparación de superficies de figuras planas por superposición, descomposición y medición.
  • 3.12. Sumar y restar medidas de longitud, capacidad, masa, superficie y volumen.
  • 4.10. Perímetro y área. Cálculo de perímetros y áreas.

Si presento esta aplicación como adecuada "a partir de 4º" es debido a mi experiencia en el aula. Los/as alumnos/as de este nivel comprenden (más con aplicaciones de geometría dinámica como ésta) estrategias, basadas en la composición y descomposición de figuras y en la reagrupación de sus partes haciendo uso de traslaciones traslación y giros; comprenden sencillas relaciones de reunión o multiplicidad en las figuras que pueden aplicar a la determinación de la cantidad de superficie (área) de éstas y su expresión en unidades no convencionales.

La aplicación presenta diferentes colecciones de figuras que pueden ser aprovechadas de múltiples formas, tanto de manera individual como grupal y colectiva, y/o que pueden servir de estímulo para otras tareas no propuestas en la misma:

Elegir una figura y explicar (oralmente y/o por escrito) el procedimiento seguido para expresar su área (cantidad de superficie) en unidades no convencionales.

Formar familias de figuras de igual área atendiendo a diferentes criterios ( con 4 escuadras, con 8 escuadras, con 9 triangulos equiláteros idénticos, ...

martes, 17 de enero de 2017

Manipulativos físicos y virtuales en la enseñanza aprendizaje de la matemática.

El número 75 de UNO. Revista de Didáctica de las Matemáticas (enero de 2017) lleva por título "Virtuales y manipulativos se complementan". Se trata de un monográfico en el que hemos aportado nuestra visión sobre esta temática Antonio Pérez Sanz, Joan Jareño, Raúl Fernández, José Ángel Murcia, Lluis Cros y yo.

Aquí ofrezco el artículo que lleva mi firma en el que, de manera bastante condensada, ofrezco mi experiencia y conocimientos sobre el tema:







miércoles, 11 de enero de 2017

Jugando con la trama de puntos interactiva...

Comprobando el correcto funcionamiento de la aplicación Trama de puntos interactiva, me encontré con una situación que llamó poderosamente mi atención. Aunque lo que voy a exponer a continuación excede el nivel al que suele ceñirse este blog, puede que algunos/as lectores/as encuentren útiles algunas de la reflexiones que aquí expongo.

 

La situación tiene que ver con la trama ortométrica y un problema de geometría euclídea. Elegí un punto como centro y comencé a trazar circunferencias concéntricas de manera que la sucesión de éstas fuera alcanzando los puntos de la trama sin dejar ninguno de ellos sin estar contenido en alguna circunferencia.

 
Un problema en la trama de puntos ortométrica. ¿Regularidad o indeterminación?

Lo que me llamó poderosamente la atención es que la serie de las circunferencias obtenidas parece no seguir ningún patrón, a pesar del orden tan patente que organiza los puntos de la trama. Se pueden encontrar dos circunferencias concéntricas consecutivas de radios muy próximos y la siguiente distanciarse "bastante" de las anteriores...

 

Evidentemente, si tomamos como unidad la distancia mínima entre dos puntos próximos de la trama (que podemos considerar dentro de un plano, es decir, infinita), la primera circunferencia tiene de radio 1, la segunda tiene de radio (raíz cuadrada de 2),... y la diferencia entre los radios de dos circunferencias consecutivas va a ser siempre menor que 1.

 

Un problema en la trama de puntos ortométrica. ¿Regularidad o indeterminación?

Me fijé en diferentes variables (número de puntos de la trama pertenecientes a cada circunferencia, radio de las circunferencias trazadas, coordenadas de los puntos,…)

 

Para la determinación de la primera variable, basta realizar una adecuada y exacta construcción de las circunferencias (para ello la trama de puntos interactiva es ideal aunque limitada) y con saber contar.


Así, la serie del número de puntos de la trama perteneciente a cada circunferencia es :

 4, 4, 4, 8, 4, 4, 8, 8, 4, 8, 4, 8, 12, 8, …. 


Parece ser que una circunferencia cualquiera de esta serie de circunferencias concéntricas siempre va a tener un número de puntos de la trama múltiplo de 4. Pero, ¿presenta esta serie alguna regularidad o patrón que permita obtener la fórmula que nos dé el número de puntos de la trama perteneciente a una circunferencia cualquiera en función  del número de orden de ésta? ¿Se podrá encontrar una circunferencia en la serie que contenga un número de puntos de la trama que sea múltiplo de 4 y tan grande como deseemos?

 

Aunque no lo he investigado a fondo, yo personalmente no encuentro ningún patrón que permita determinar con exactitud la serie de números anterior.

 

Para la determinación de la serie ordenada de números correspondientes a los radios de las circunferencias, se necesita hacer uso del famoso teorema de Pitágoras ( que es ya un contenido de Educación Secundaria). Aplicando este teorema se obtiene con facilidad la serie de radios:


(Aunque las raíces cuadradas de los cuadrados perfectos - en verde- son números naturales, he preferido unificar, en forma de raíces, la presentación de la serie)

La situación anterior se puede formular de otras maneras equivalentes: Dada una circunferencia con centro en el origen de coordenadas cartesianas, determinar los radios de las circunferencias que tienen al menos 4 puntos cuyas coordenadas son números enteros. Así la circunferencia de radio 1 tendría 4 puntos de coordenadas enteras [(0,1), (-1,0),(0,-1) y (1,0)]. 

Con un radio mayor que 1 y menor que raíz de 2 no existe ninguna circunferencia con centro en el origen (0,0) que tenga puntos con coordenadas enteras...


¿Habrá alguna circunferencia con centro en el origen de coordenadas que tenga un número (múltiplo de 4) tan grande como se desee de puntos con coordenadas enteras?...


¿Cómo determinar los radios de las circunferencias que tienen al menos cuatro puntos de coordenadas enteras? Yo no soy capaz de encontrar ningún patrón en la serie de radios de estas circunferencias (no tiene por qué haberlo). 

Por analogía, se puede plantear la misma situación en la trama isométrica. Tampoco encuentro ningún patrón a excepción de que los puntos de la trama contenidos en cada circunferencia son múltiplos de 6 : 6, 6, 6, 12, 6, 6, 12, 6, 12, 12, 6, 6, ......., 18,...



Un problema en la trama de puntos isométrica. ¿Regularidad o indeterminación?

Un problema en la trama de puntos isométrica. ¿Regularidad o indeterminación?


Casi con toda seguridad, esta situación ya habrá sido matematizada anteriormente por alguien. Yo lo desconozco y, por si acaso, la dejo aquí, como problema abierto a la comunidad de "matemáticos"...
(Agradecería mucho cualquier información, enlace o comentario al respecto)

Algunas reflexiones relacionadas con lo anterior:

1.- La búsqueda de patrones o regularidades debe ser el motor fundamental de la actividad matemática en cualquier nivel. Se puede llevar a cabo desde Educación Infantil, constituye una valiosa fuente de aprendizaje y es imprescindible en una matemática enfocada al aprendizaje por descubrimientoEs un contenido procedimental general de carácter transversal con respecto a todos los contenidos de la Matemática y de las otras disciplinas.

Ejemplo: Hoy mismo mis alumnos/as de 5º han ampliado considerablemente los criterios de divisibilidad que se dan en el libro de texto (por 2, por 3, por, 5, por 9 y por 10) con otros descubiertos y expresados por ellos (por 6, por 15, por 20, por 25, por 50, por 100, por 200, por 250, por 500,...) a partir de la visualización en la PDI de series de múltiplos de los números anteriores.

Descubriendo regularidades. Criterios de divisibilidad

2.- No sólo existen patrones numéricos. Es fundamental trabajar los patrones geométricos, porque Geometría y Numeración están estrechamente relacionados, como es el caso de la situación con la que he iniciado este post, y porque son especialmente atractivos e intuitivos y favorecen la captación y expresión de las regularidades... 
( Ver Trama de puntos interactiva  y  Regularidades en matemáticas. Patrones)

3.- La propia matemática se constituye, así, en un contexto ideal en el que podemos plantear numerosas situaciones atractivas para descubrir patrones y regularidades en relación con cada uno de los contenidos que se tratan en el currículo de matemáticas. 



viernes, 2 de diciembre de 2016

Animales de papel. (Midiendo longitudes)

Los alumnos realizan medidas de longitudes utilizando diferentes procedimientos y unidades, registran las cantidades obtenidas en forma de tabla e interpretan los datos de la tabla mientras resuelven retos propuestos...
Desarrollo de la competencia matemática y acercamiento al método científico a nivel básico.

Animales de papel. Midiendo longitudes.

jueves, 17 de noviembre de 2016

La original respuesta de Jiaqi Lin (operaciones combinadas en la resolución de PAEV)

Jiaqi Lin (5º) mostrando orgullosa su sobresaliente (10) en el control


Frente a modelos de resolución de PAEV (Problemas Aritméticos de Enunciado Verbal) que ponen el énfasis en la forma de realizar los cálculos, vengo defendiendo un nuevo  modelo de   resolución   centrado   en   el   razonamiento lingüístico-matemático.  Se  trata  de  un  modelo  significativo,  avanzado  y  bien  fundamentado  didácticamente  en  tanto  en  cuanto pone el énfasis en la expresión de la estrategia de resolución íntimamente ligada a la estructura del problema. Ello implica necesariamente diferir la  realización  de los cálculos. Además de ser un modelo más significativo y "más experto", previene la mayoría de los errores que tradicionalmente vienen cometiendo los/as alumnos/as en la resolución de PAEV porque ven números que saben que tienen que operar con otros números y no significados y estructuras... Exige  mayor estructuración   de   la información   y   consiste   fundamentalmente   en   la   explicitación  prealgebraica  y  algebraica  de  la  estructura  del  problema  como  requisito previo a la realización de cálculos. 


En diferentes post de este blog he tratado sobre mi método de "Resolución de PAEV mediante el modelado algebraico con etiquetas de texto". Una justificación del mismo se realiza en este documento (en .pdf)



Las imágenes corresponden a un control escrito sobre resolución de problemas de varias operaciones, en 5º del presente curso, haciendo uso exclusivo de la expresión algebraica (operaciones combinadas en una sola línea) como expresión de la estrategia y, a la par, como solución indicada de los problemas propuestos.

En este caso los/as alumnos/as no pueden realizar ningún cálculo y, por tanto, sólo pueden aparecer en las expresiones algebraicas datos proporcionados en el problema...

Quiero aquí llamar la atención sobre la original respuesta de Jiaqi Lin a la pregunta "¿Cuánto dinero del recaudado les quedó a los gerentes del teatro después de pagar a los actores?"

La original respuesta de Jiaqi

No se ha repetido esta solución en ninguno de los otros 47 alumnos/as de 5º que realizó la prueba. La respuesta dada por los/as demás alumnos/as que han acertado esta pregunta ha sido [(225 x12)+(125x6)]-(350x5),  o bien ligeras variantes de la anterior : [(225 x12)+(125x6)]-[(225x5)+(125x5)] [(225 x12)+(125x6)]-[(225 + 125)x5],...

Ni que decir tiene que los/as alumnos/as deben saber calcular el valor numérico de estas expresiones algebraicas. Pero quiero dejar claro que eso es secundario frente a la identificación y expresión de la estructura o columna vertebral del problema. Lo realmente importante para llegar a ser un resolutor experto es encontrar la expresión algebraica. Cualquier programador, por poner un ejemplo, daría las instrucciones de una manera similar para que el ordenador realizara los cálculos... Pero si digo que los cálculos son secundarios es porque generalmente se insiste muy poco en los significados de las expresiones algebraicas. Éstas, por lo general, no tienen su origen ni se relacionan con la resolución de problemas sino que aparecen como algo aparte y descontextualizado que es dado a los/as alumnos/as para ser resuelto siguiendo un conjunto de reglas. Para mis alumnos/as cada paréntesis o corchete encierra una magnitud diferente que hay que saber identificar y describir, y no nos importa escribir más paréntesis de los estrictamente necesarios:

(12-5): Cantidad de dinero que queda como beneficio a los gerentes del teatro por cada entrada de adulto tras haber pagado a los actores.

((12-5) x 225): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas de adulto tras haber pagado a los actores.

(6-5): Cantidad de dinero que queda como beneficio a los gerentes del teatro por cada entrada de niño tras haber pagado a los actores.

((6-5) x 125): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas de niño tras haber pagado a los actores.

((12-5) x 225)+((6-5) x 125): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas  tras haber pagado a los actores.

Lo anterior está directamente relacionado con los siguientes indicadores (Currículo de Matemáticas-Primaria-Andalucía):
Indicadores:
MAT.3.1.1. En un contexto de resolución de problemas sencillos, anticipa una solución razonable y busca los procedimientos matemáticos adecuados para abordar el proceso de resolución. (CMCT, CCL, CAA). 
MAT.3.1.2. Valora las diferentes estrategias y persevera en la búsqueda de datos y soluciones precisastanto en la formulación como en la resolución de un problema. (CMCT, CAA, SIEP). 
MAT.3.1.3. Expresa de forma ordenada y clara, oralmente y por escrito, el proceso seguido en la resolución de problemas. (CMCT, CCL).
Además del modelado algebraico mediante etiquetas de texto, utilizamos otros modelos. He aquí algunas aplicaciones para segundo y tercer ciclo de Primaria que he diseñado y utilizo para el fin anteriormente descrito: 

A.- Un modelo de resolución asistida.
Completa y calcula

B.- Un modelo de asociación.
Asocia cada problema con su operación indicada


 C.- Un modelo de expresión/construcción.
Resolución de PAEV. Del enunciado a la expresión algebraica.´

La siguiente "macroaplicación" contiene a las anteriores así como otras dos dedicadas específicamente al cálculo de operaciones combinadas. Se propone como una secuencia internivelar que recoge las consideraciones metodológicas y didácticas referidas anteriormente:

Operaciones combinadas. Secuencia internivelar


 

domingo, 6 de noviembre de 2016

Multiplicación y división. Algoritmos estándar.

Tal y como prometí en el post "De las estrategias propias a los algoritmos estándar", ofrezco aquí las aplicaciones interactivas que permiten aprender y practicar, gradualmente, los algoritmos estándar de la multiplicación y la división.

Algoritmos estándar para la multiplicación y división.