domingo, 12 de enero de 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_I



Ilustración método resolución de PAEV haciendo explícita la estructura del problema a dos niveles: el del procesamiento lingúístico y el del procesamiento matemático.

Los profesores, mayoritariamente, manifestamos que no existe una relación satisfactoria entre el mucho tiempo que se dedica en las aulas a plantear problemas aritméticos a los alumnos y el escaso progreso que éstos consiguen en las habilidades para su resolución

Con frecuencia nos quejamos de que libros de texto y cuadernillos de trabajo proponen, de manera reiterativa, un número elevado de problemas, frecuentemente repetitivos, que no da tiempo a realizar... El problema se agrava si el tratamiento de la Resolución de Problemas (RP, en adelante) se realiza fundamentalmente de manera individual y en forma de deberes escritos para casa – porque consumen mucho tiempo de clase -, copiando el enunciado, volviendo a copiar datos, pregunta,…(que, para la mayoría de los alumnos, supone un procesamiento insuficiente o poco productivo de la información), volviendo a repetir los pasos para su corrección en la pizarra...

Teniendo en cuenta la ingente cantidad  de libros y documentos digitales en los que se recogen ideas y conclusiones útiles sobre la resolución de problemas, en la página Biblioteca_Viva_Didáctica_Matemáticas, de este blog, ofrezco un listado que puede ser considerado como suficiente para maestros/as que deseen estar puestos en el tema.

Un buen número de las ideas y propuestas que se recogen en los documentos anteriores – y otros análogos- han sido aprovechadas, interpretadas y llevadas a formatos impresos por profesores que han sentido la necesidad de abordar la RP en sus aulas de manera más científica, más fundamentada.  En mucha menor medida estas ideas y propuestas se han llevado al formato digital. (Ver Metamodelos y modelos TIC (I) (II) y (III) en la resolución de problemas) Hay, además, muy poca investigación específica sobre el aporte que pueden hacer las TIC en la resolución de PAEV.


Las TIC, aunque aún en casos muy contados, nos están permitiendo disponer de formas atractivas, rápidas y eficaces de abordar la RP que nos liberan de la excesiva dependencia de la tradición escrita escolar. No todo se aborda en la escuela de forma óptima escribiendo…

Creo que es cierto y justo afirmar que  didactmaticprimaria  es un sitio pionero en la investigación y desarrollo de modelos_TIC que ayudan (tanto al alumnado como al profesorado) a abordar la RP en Primaria de manera atractiva y con una sólida fundamentación didáctica y pedagógica. Basta con echar un vistazo a los modelos relacionados en la página  Biblioteca_Manipulables_Virtuales_Matemáticas_IV para convencerse de ello.

Como ya he mencionado anteriormente, diferentes investigaciones han puesto de manifiesto categorías y tipos fundamentales de problemas, modelos y metamodelos de RP así como los mecanismos que intervienen y se activan cuando se intenta resolver un problema. Ello implica saber (y por lo tanto enseñar) las estrategias que mejor ayudan a su resolución.


(Ver a pantalla completa)

Salta a la vista que esta nueva aplicación digital no propone la RP de manera rutinaria, que va más allá de ofrecer una batería de problemas de una determinada categoría o tipo (las hay a miles) y que no se conforma, tampoco, con hacer una propuesta de problemas que puedan corregirse o comprobarse con la inmediatez que permiten las TIC, pero ocultando o eludiendo el tratamiento de las dificultades inherentes a la resolución de problemas aritméticos.

Por el contrario, esta aplicación forma parte de un conjunto de formatos interactivos que implementan y desarrollan un innovador modelo-TIC (de generación y estructuración) de resolución de Problemas Aritméticos Escolares de Enunciado Verbal (PAEV), de dos o más operaciones en este caso, que pone el énfasis en el desarrollo conjunto de competencias lingüísticas y matemáticas haciendo explícita la estructura del problema a dos niveles: el del PROCESAMIENTO LINGÜÍSTICO (que lleva a la expresión prealgebraica de la igualdad directriz del problema – estructura lógica-) y el del PROCESAMIENTO MATEMÁTICO (que traduce la anterior en forma de expresión algebraica que puede considerarse ya la solución del problema). Su especial adaptación a la PDI (Pizarra digital interactiva) y el trabajo colectivo con la misma permitirá hacer patentes en el contexto de RP las interrelaciones entre competencias lingüísticas y matemáticas (Leer, Pensar y Razonar, Hablar, Argumentar y Justificar, Escuchar, Comunicar, Construir modelos, Plantear y resolver problemas, Representar, Utilizar un lenguaje simbólico, formal y técnico,...)

(La fundamentación de este método puedes encontrarla en Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV)).


Ilustración método resolución de PAEV haciendo explícita la estructura del problema a dos niveles: el del procesamiento lingúístico y el del procesamiento matemático.


Ilustración método resolución de PAEV haciendo explícita la estructura del problema a dos niveles: el del procesamiento lingúístico y el del procesamiento matemático.















Este modelo_TIC de resolución de PAEV recoge e implementa lo esencial del método ANÁLISIS-SÍNTESIS en la resolución de problemas (muy bien presentado en los documentos Problemas aritméticos escolares  y La estructura de los problemas aritméticos de varias operaciones combinadas (ambos de Luis Puig y Fernando Cerdán), pero quizá vaya más aún más allá:
El resolutor, guiado por el análisis de la incógnita y de los datos, planea el método de resolver el problema en su cabeza y comienza a llevarlo a cabo. Si falla, analiza los errores, clarifica por qué el método elegido no le permite alcanzar la solución, intenta corregirlo, o toma una vía diferente. Algunas veces, por un momento, reconstruye el problema, descarta algunos datos, simplificando la determinación de las relaciones entre los datos y la incógnita. El trabajo creativo del pensamiento se da en estas construcciones y en la elección de las posibles vías de solución. (Kalmykova, 1975, pgs. 118-119)

De una manera deliberada, se difiere el manejo de números y la realización de cálculos hasta que no se haya encontrado la correcta estructura lógica del problema, formada por las magnitudes implicadas en la solución y las operaciones entre ellas (que establecen las relaciones semánticas entre las magnitudes)

Se pone así de manifiesto que resolver un problema aritmético es, ante todo y sobre todo, una cuestión de significados – y no de cálculos -. De hecho, no dudaríamos en absoluto en afirmar que el enunciado de un  PAEV ha sido entendido por un alumno si sabe exponerlo con sus palabras sin hacer uso de números. El diferir la realización de los cálculos en un PAEV no es algo caprichoso. No tiene sentido comenzar a calcular si no se ha encontrado la forma de llegar a la solución. Además, esto evita varias de las mayores dificultades que históricamente ha señalado y constatado el profesorado en relación con el proceso de resolución:

  • Insuficiente comprensión del enunciado del problema derivada de una insuficiente representación mental del mismo.
  • Excesiva prisa por realizar cálculos numéricos y, por tanto, tendencia a usar estrategias superficiales (casi exclusivamente de identificación – datos, incógnita,…-) que, con frecuencia, les lleva a derivar los esfuerzos en lo secundario, en una parte, impidiéndoles captar o representar la totalidad primaria o fundamental.
  • Insuficiente interiorización de las propiedades de las operaciones, las relaciones entre ellas y sus significados (muchas veces derivadas de la práctica de cálculos descontextualizados, y al margen de la RP, en las que sólo se manejan números y no cantidades determinadas de magnitudes)
  • Dificultad en la organización de los elementos utilizados en la resolución (textos, cálculos- sobre todo cuando realizan “cuentas”verticales unas al lado de otras-, gráficos, etc).

Esta aplicación brinda una importante ayuda al alumnado en el proceso de resolución ya que le facilita los elementos del problema que él tiene que relacionar adecuadamente para encontrar la solución.

Invito a los/as  maestros/as que aún crean que lo esencial de la resolución de PAEV reside en los números o en los cálculos algorítmicos - de la naturaleza que sean-,  a practicar con esta otra aplicación que no es sino una variante de la anterior. ¡En ella se proponen 80 problemas sin números en torno a 20 situaciones problemáticas! (con 148 soluciones diferentes)


(Ver a pantalla completa)


Invito desde aquí al profesorado a probar estas aplicaciones en las aulas. Agradecería cualquier comentario en relación con su puesta en práctica.

4 comentarios :

  1. Hola Juan! Feliz Año!
    Gracias por esta aplicación virtual, porque seguro que "enganchará" a mis alumnos, además de venirme de perlas para complementar sus experiencias, enfocadas en esta línea, pero a nivel manipulativo y vivenciando a través de escenificaciones.
    Genial tu blog!!!

    ResponderEliminar
    Respuestas
    1. Feliz Año, Alicia!
      Gracias por tu comentario. Me parece muy acertado utilizar sencillas escenificaciones y dramatizaciones como heurístico en la RP.
      No entiendo muy bien la expresión "pero manipulativo" que parece contraponerse a la naturaleza de la propuesta que aquí se hace que, obviamente, es eminentemente manipulativa. Y es que la manipulación no es un objetivo en sí misma, ni una competencia matemática o o similar.
      La actividad de la que se postulan benéficas consecuencias en matemáticas es, según el constructivismo, es la actividad mental. Ésta puede ser estimulada, o no, mediante materiales manipulativos adecuados tanto analógicos como virtuales...

      Desde Pere Puig i Adam ya el material didáctico en matemáticas se identifica y enmarca en una categoría superior: el modelo. Por modelo él entendía todo aquel material capaz de traducir o sugerir ideas matemáticas; toda imagen que traduce concretamente una idea abstracta.
      Es característico de los buenos modelos que traduzcan o sugieran creando situaciones activas de aprendizaje...
      Hay todavía quienes opinan que los materiales virtuales, por el hecho de ser virtuales, son sustitutivos o complementarios de los correspondientes analógicos (por el hecho de ser analógicos). Yo no comparto esta idea y me he encargado de ilustrarla y demostrarla con muchas de mis aplicaciones. Para mí un geoplano virtual bien diseñado no es sustitutivo de un geoplano analógico y puede incluso presentar más prestaciones que éste.

      ¿Tendría el material que aquí se presenta más interés didáctico o potencial pedagógico si se implementara en cartulinas plastificadas y provistas de velcro para utilizarlas sobre un franelograma?
      ¡Vaya, pues sí que me he enrollado! Saludos y ánimo con tu labor.

      Eliminar
  2. Bueno, es un error nominativo, evidentemente me refería a los materiales manipulativos analógicos, a través de ellos dirijo a mis alumnos hacia la reflexión. Los materiales analógicos en matemáticas, les permiten contrastar y comprobar sus mediciones y cálculos en la resolución de problemas, más aún en primaria, por lo que los considero imprescindibles. Estoy totalmente de acuerdo en que los alumnos trabajen con materiales virtuales (aunque no todos contamos con estos recursos*) y que son necesarios, concretamente los que tú elaboras les lleva a la reflexión, y como van en la misma línea en la que yo trabajo, me sirve de complemeto, a eso me refería. *Es genial contar con unos geoplanos analógicos y con tus geoplanos virtuales en el aula, pero por ejemplo en 2º ciclo, que los estamos trabajando ahora, no tenemos los recursos para los segundos, aunque sí les he dado tu página para que lo vean en casa.
    Saludos

    ResponderEliminar

Didactmaticprimaria agradece tus comentarios