martes, 3 de junio de 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)