domingo, 19 de agosto de 2018

Pentaminós, hexadeltas y tetraescuadras.

Pentaminós, hexadeltas y tetraescuadras.


¿Qué decir de las “familias de figuras” obtenidas a partir de un sencillo criterio geométrico?

Si pensamos, por ejemplo, en los diferentes niveles de organización de la materia viva (subatómico, atómico, molecular, celular, pluricelular,...) comenzamos a entender cómo lo más complejo surge de lo más simple organizado de infinidad de maneras diversas que hace posible  la  combinatoria de los elementos más simples…

El concepto de unidad es de los más abstractos en matemáticas, porque una unidad considerada a un determinado nivel es una pluralidad compleja a otros niveles (un elefante, un triángulo,…)

Pues bien, un procedimiento que guarda analogía con el que sigue la propia Naturaleza para crear su diversidad, podemos implementarlo con las "familias de figuras". Las figuras elementales serán las unidades, los "átomos" con los que se pueden formar "moléculas" más complejas...

El razonamiento espacial actúa sobre figuras geométricas por medio de operaciones básicas entre las que destacan el análisis (descomposiciones diversas de un mismo todo) y la síntesis (combinaciones diferentes de las mismas partes) teniendo en cuenta la orientación espacial de las figuras. El análisis y la síntesis son habilidades cognitivas constitutivas de nuestra inteligencia. Las utilizamos cuando leemos, cuando descomponemos y componemos números, cuando componemos y descomponemos figuras,… Desarrollan tanto nuestro pensamiento convergente (partes diferentes se organizan configurando un mismo todo final) como el pensamiento divergente, inventivo y creativo (las mismas partes se organizan en todos que son diferentes). 

Por otra parte, el razonamiento espacial no sólo es básico para disciplinas matemáticas (Geometría, Topología,...) sino que es básico en disciplinas técnicas (Arquitectura, Microelectrónica,…)

Creo que está más que justificado ofrecer en el currículo de matemáticas la posibilidad de que los/as alumnos/as jueguen con figuras tan especiales como los pentaminós, hexadeltas y tetraescuadras, que exploren posibilidades de agruparlas, etc…

El problemas es que la/s experiencia/s que se proponen como enriquecedoras para los/as alumnos/as deberían haberlas tenido antes los docentes. Esto, en la mayoría de los casos, no es así, sobre todo tratándose de experiencias geométricas… Por ello, una aplicación interactiva como ésta, esencialmente visual, dinámica y constructiva, en la que se proponen y se implementan novedosas investigaciones geométricas, resulta un instrumento ideal para facilitar esa experiencia a alumnos/as y docentes…

¡Qué la disfruten!

Ver, también,  






No hay comentarios :

Publicar un comentario

Didactmaticprimaria agradece tus comentarios