lunes, 1 de abril de 2019

8 Metamodelos TIC de resolución de PAEV, de nivel 1 y estructura aditiva.

8 Metamodelos TIC de resolución de PAEV, de nivel 1 y estructura aditiva.

Algunas de las 8 aplicaciones que brindo integradas en esta macroaplicación fueron ya publicadas en 2009, incluidas en ProblemáTICas Primaria. Pero no he parado de retocarlas, mejorarlas y ampliarlas. Y no sólo porque sea un perfeccionista, que lo soy para determinadas tareas, sino porque además de mi criterio propio, tengo en cuenta sugerencias de compañeros y docentes. 

Anteriormente ya había publicado conjuntamente los modelos 2 y 3. Y es aquí donde me han llegado sugerencias. Hay quien no entiende, o considera complicada, o artificiosa, la SUMA POR COMPENSACIÓN y LA RESTA POR DESPLAZAMIENTO, algoritmos por los que opté en el modelo 3, para asistir la fase de cálculo por considerarlos los más potentes y acordes con estrategias de cálculo mental. El modelo 3 permite visualizar una presentación interactiva donde se ilustran estos algoritmos que favorecen un cálculo estratégico.

Quiero insistir desde aquí que si queremos cambiar una suma por otra equivalente (con el mismo resultado) forzosamente hemos de utilizar la compensación ( lo que quitamos a un sumando se lo añadimos al otro). Si hacemos esto procurando que algún sumando sea una cantidad exacta de decenas, centenas,..(números redondos) podremos resolver fácilmente la suma en un número reducido de pasos. De análoga manera si queremos encontrar una resta equivalente (misma diferencia) a otra dada, pero con diferentes minuendo y sustraendo, forzosamente tenemos que utilizar alguna de estas dos opciones:
     1.- Disminuir en una misma cantidad minuendo y sustraendo.     2.- Aumentar en una misma cantidad minuendo y sustraendo.
Ambas estrategias se traducen en un desplazamiento (hacia la izquierda  y hacia la derecha, respectivamente) en la recta numérica. El desplazamiento más eficaz es aquel que lleva de una manera más fácil a conseguir que el extremo correspondiente al sustraendo sea un número redondo (142 - 28 = 144 - 30 = 114;  56 - 19 = 57 - 20 = 37; 175 - 98 = 177 - 100 = 77;  127 - 32 = 125 - 30 = 195 - 100 = 95, ...). Evidentemente, estas estrategias necesitan trabajarse específicamente.
 Entender y practicar LA SUMA POR COMPENSACIÓN Y LA RESTA POR DESPLAZAMIENTO.

Teniendo en cuenta  que estas aplicaciones han tenido mucha aceptación y han sido muy  visualizadas, atendiendo a sugerencias de docentes, considerando que son muchos los docentes que utilizan en 1º ciclo de Primaria  la suma y resta por descomposición, incluso  teniendo en cuenta que los currículos de matemáticas de determinadas comunidades autónomas prescriben la utilización de los algoritmo estándar en la resolución de problemas, ...Por todo ello, el modelo 3 se enriquece aquí con los modelos 4 y 5

Los modelos 3, 4 y 5 tienen en común los 30 problemas de estructura aditiva que proponen. Y tienen las siguientes características:


  • Cada problema presenta enunciado verbal e imagen que lo ilustra.
  • El texto del enunciado se puede subrayar con colores diferentes para identificar datos e incógnita.
  • Los datos, tanto necesarios como superfluos, se generan, y se varían al instante si se desea, aleatoriamente (pero dentro de unos rangos numéricos prefijados).
  • La resolución comienza completando las operaciones indicadas (introduciendo datos y seleccionando la operación correcta).
  • Cuando se completa correctamente la operación indicada (expresión de la estrategia de resolución del problema) aparece el formato del algoritmo correspondiente (para la suma o para la resta).
  • Una vez que se completa el formato del algoritmo correctamente, se puede introducir la solución.
  • Dispone de avisos acústicos y elementos gráficos que ayudan a pasar de una fase a otra.
  • Indica, en todo momento, el número correspondiente al problema que se está realizando. Registra y remarca los números de los problemas correctamente realizados. 
  • Permite la navegación por los problemas tanto de manera ascendente como descendente,  o elegir directamente el número del problema que se desea realizar. No es necesario haber terminado un problema para pasar a otro. Esto permite a los docentes recorrer, si lo desean, todos los problemas propuestos y analizar más rápida y cómodamente su contenido.